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Fundamental Fermions Fit Inside One su(1|5)
Irreducible Representation

N. I. Stoilova1,2 and J. Van der Jeugt1

Received February 22, 2005; accepted March 9, 2005

The Lie superalgebra su(1|5) has irreducible representations of dimension 32, in which
the 32 fundamental fermions of one generation (leptons and quarks, of left and right
chirality, and their antiparticles) can be accommodated. The branching of these su(1|5)
representations with respect to its subalgebra su(3) × su(2) × u(1) reproduces precisely
the classification of these fundamental fermions according to the gauge group su(3)c ×
su(2)w × u(1)w of the Standard Model. Furthermore, a simple construction of the
relevant representations is given, and some consequences are discussed.
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1. INTRODUCTION

The success of the Standard Model (Glashow, 1961; Salam and Ward, 1964;
Weinberg, 1967; Salam, 1968; Weinberg, 1973; Gross and Wilczek, 1973; Fritzsch
et al., 1973), with gauge group (or Lie algebra) su(3) × su(2) × u(1) ≡ su(3)c ×
su(2)w × u(1)w 3 , is beyond doubt. The theory is also full of unexplained patterns,
and contains many free parameters. In unified theories (grand unified theories) one
tries to find a simpler pattern by trying to fit the data of the Standard Model into
a larger unity. The classical example is that of Georgi and Glashow (1974), who
proposed a unified theory based upon the Lie algebra su(5). Even though the
su(5) model has many nice features, it unified the su(3) × su(2) × u(1) model
only partly: for example, the fundamental fermions did not appear in a single
irreducible representation (irrep) of su(5). Other models were proposed, of which
the ones based upon the Lie algebras so(10) (Fritzsch and Minkowski, 1975;
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Georgi, 1975) and E6 (Gürsey et al., 1975) are the best known (Ross, 1985). Such
unified theories had a setback when the proton decay, predicted in the su(5) model,
was not confirmed by experiments. Since then, particle physics turned its attention
to supersymmetry, superstrings, M-theory, . . .

All this time, a unification in terms of the Lie superalgebra su(1|5) has been
given little attention (Batakis et al., 1993; Dondi and Jarvis, 1980; Ne’eman and
Sternberg, 1980). In this paper, we point out some elegant features of such a su(1|5)
model. The Lie superalgebra su(1|5) contains u(1) × su(3)c × su(2)w × u(1)w as
a subalgebra. So essentially it contains the Lie algebra of the Standard Model as
a subalgebra; the first u(1) can be considered as providing a label distinguishing
between the same irreps of su(3)c × su(2)w × u(1)w. One particularly nice feature
is that all fundamental fermions of a single generation (so all leptons and quarks
of left and right chirality and their antiparticles) fit inside one single irreducible
representation (irrep) of su(1|5). Moreover, this irrep contains nothing else.

In Section 2, we describe the relevant irreps of su(1|5), and show how the
fundamental fermions of the first generation (the other generations are similar)
fit inside this. Section 3 gives some mathematical details of the branching from
su(1|5) to u(1) × su(3)c × su(2)w × u(1)w. Furthermore, it gives an interesting
description of the su(1|5) irreps considered here. Some final remarks are given in
Section 4.

2. FUNDAMENTAL FERMIONS IN su(1|5)

Let us start by a description of the left-handed fundamental fermions in the
Standard Model, i.e., the way they are grouped into irreps of su(3)c × su(2)w ×
u(1)w (see for example, Slansky (1981) or the classical reference books Aitchison
and Hey (2003 and 2004); Cheng and Li, (1991)). This description is given in
Table I. Herein, an irrep of su(3)c × su(2)w × u(1)w is labeled by (λµ; j ; Y ):
(λµ) is the Dynkin label of the su(3)c irrep [so (00) stands for the 1-dimensional
irrep, and the 3-dimensional irreps (10) or (01) are often referred to as 3 and
3∗]; (j ) is the Dynkin label of su(2)w [(0) is the 1-dimensional irrep; (1) is the
2-dimensional irrep with isospins +1/2 and −1/2]; and finally Y is the u(1)w label
corresponding to hypercharge. In this table, Iw

3 is the notation for weak isospin,
Y = Yw for hypercharge, and Q = Iw

3 + Y/2 for electromagnetic charge.
The corresponding antiparticles with right chirality appear in the contragre-

dient representations of the ones given in this table, that is: (01; 1; − 1
3 ) for the

right-handed up and down antiquarks (ũR, d̃R); (10; 0; 4
3 ) for the right-handed up

quark uR; (10; 0; − 2
3 ) for the right-handed down quark dR; (00; 1; +1) for the

right-handed positron and antineutrino (ẽR, ν̃R); (00; 0; −2) for the right-handed
electron eR; and (00; 0; 0) for the right-handed neutrino νR (though there is some
doubt about whether right-handed neutrinos exist).
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Table I. List of Left-Handed Fundamental Fermions

Irrep labels Dim Fermions Symbol su(3)c irrep Iw
3 Yw Q

(
10; 1; + 1

3

)
6 Up and down quarks uL 3 +1/2 +1/3 +2/3

dL 3 −1/2 +1/3 −1/3(
01; 0; − 4

3

)
3 Up antiquarks ũL 3∗ 0 −4/3 −2/3(

01; 0; + 2
3

)
3 Down antiquarks d̃L 3∗ 0 +2/3 +1/3

(00; 1; −1) 2 Electron and neutrino eL 1 −1/2 −1 −1
νL 1 +1/2 −1 0

(00; 0; +2) 1 Positron ẽL 1 0 +2 +1
(00; 0; 0) 1 Antineutrino ν̃L 1 0 0 0

Let us now consider a particular class of representations of the Lie superal-
gebra su(1|5). In general, irreps of su(1|5) [or sl(1|5)] are labeled by five Kac–
Dynkin labels (Kac, 1977). Here, we only need the irreps with Kac–Dynkin labels
(p; 0, 0, 0, 0). Such a representation is typical if p �∈ {0, 1, 2, 3, 4} and atypical
otherwise (Kac, 1977, 1978). If p is real and p > 4, then the irrep is unitary; the
atypical irreps with p ∈ {0, 1, 2, 3, 4} are also unitary (Gould and Zhang, 1990).
The typical irreps (p; 0, 0, 0, 0) have dimension 32 and their decomposition or
branching to u(1) × su(3)c × su(2)w × u(1)w is given by:

(p; 0, 0, 0, 0) →
(

5p

4
; 00; 0; 0

)
+

(
5p

4
− 1; 10; 0; −2

3

)

+
(

5p

4
− 1; 00; 1; +1

)
+

(
5p

4
− 2; 01; 0; −4

3

)

+
(

5p

4
− 2; 10; 1; +1

3

)
+

(
5p

4
− 2; 00; 0; +2

)

+
(

5p

4
− 3; 10; 0; +4

3

)
+

(
5p

4
− 3; 01; 1; −1

3

)

+
(

5p

4
− 3; 00; 0; −2

)
+

(
5p

4
− 4; 01; 0; +2

3

)

+
(

5p

4
− 4; 00; 1; −1

)
+

(
5p

4
− 5; 00; 0; 0

)
. (1)

Herein, the first label is just the new u(1) value, and the remaining labels are as
previously introduced for su(3)c × su(2)w × u(1)w. It is easy to check that the
dimensions in the right-hand side of (1) do indeed add up to 32.

The atypical irreps have lower dimensions:

dim(4; 0, 0, 0, 0) = 31, dim(3; 0, 0, 0, 0) = 26,

dim(2; 0, 0, 0, 0) = 16, dim(1; 0, 0, 0, 0) = 6, (2)
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and of course the trivial irrep (0; 0, 0, 0, 0) has dimension 1. The decompositions
of the atypical irreps (2) to u(1) × su(3)c × su(2)w × u(1)w can still be obtained
from (1) by deleting those subalgebra irreps with nonpositive u(1) label. For
example, the decomposition of (4; 0, 0, 0, 0) is given by (1) with p = 4 but the
last line deleted; the decomposition of (3; 0, 0, 0, 0) is given by (1) with p = 3
but the last two lines deleted, etc. These decompositions can be obtained from
character formulas for typical and singly atypical irreps (Van der Jeugt et al.,
1990).

It should now be clear that the 32-dimensional su(1|5) irreps (p; 0, 0, 0, 0)
accommodate all fundamental fermions, and nothing more. This is once more
summarized in Table II.

Note that for p = 4, one finds the same table but with the last line deleted,
so without the right-handed neutrino (as some would prefer).

Observe that su(1|5) representations were also used in Ne’eman and
Sternberg (1980) to accommodate fundamental fermions. In Ne’eman and
Sternberg (1980), the identification of basis states of the representation with
the fermions is different from the one given here (in the sense that the
su(3)c × su(2)w × u(1)w subalgebra structure is not maintained). Moreover, in
the construction of the present paper p is in principle arbitrary, and the repre-
sentations considered are irreducible (see also next section). The representation
constructed in Ne’eman and Sternberg (1980) corresponds to p = 2, and is a

Table II. All Left- and Right-Handed Fundamental
Fermions in the Irrep (p; 0, 0, 0, 0) of su(1|5)

Subalgebra irrep Dim Fermions

(
5p
4 ; 00; 0; 0

)
1 ν̃L(

5p
4 − 1; 10; 0; − 2

3

)
3 dR(

5p
4 − 1; 00; 1; +1

)
2 (ẽR, ν̃R)(

5p
4 − 2; 01; 0; − 4

3

)
3 ũL(

5p
4 − 2; 10; 1; + 1

3

)
6 (uL, dL)(

5p
4 − 2; 00; 0; +2

)
1 ẽL(

5p
4 − 3; 00; 0; −2

)
1 eR(

5p
4 − 3; 01; 1; − 1

3

)
6 (ũR, d̃R)(

5p
4 − 3; 10; 0; + 4

3

)
3 uR(

5p
4 − 4; 01; 0; 2

3

)
3 d̃L(

5p
4 − 4; 00; 1; −1

)
2 (eL, νL)(

5p
4 − 5; 00; 0; 0

)
1 νR
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32-dimensional reducible representation (the so-called Kac module (Kac, 1977,
1978)). The irreducible quotient of this representation is the 16-dimensional irrep
with labels (2; 0, 0, 0, 0).

It should be added that the branching of su(1|5) irreps with respect to u(1) ×
su(5) has already been described in Dondi and Jarvis (1980), and repeated in
Batakis et al. (1993). These descriptions correspond to the branching given here
in (1).

In this paper, we shall give a particularly simple description of the basis
states of these irreps, including their transformation under the Lie superalgebra
generators of su(1|5).

3. THE LIE SUPERALGEBRA su(1|5) AND ITS IRREDUCIBLE
REPRESENTATIONS ( p; 0, 0, 0, 0)

For an introduction to the theory of (simple) Lie superalgebras and their
notation, see Kac (1977, 1978) or Scheunert (1979). The algebra su(1|5) is a real
form (Kac, 1977; Parker, 1980) of the Lie superalgebra sl(1|5), which is closely
related to gl(1|5). A convenient basis of gl(1|5) is given by the Weyl generators eij ,
with i, j ∈ {0, 1, . . . , 5}. The grading of gl(1|5) is as follows: the even elements
are given by e00 and eij with i, j ∈ {1, . . . , 5}; the odd elements are e0i and ei0

(i = 1, . . . , 5). The Lie superalgebra bracket (which stands for a commutator or
an anticommutator) is determined by

[[eij , ekl]] = δjkeil − (−1)deg(eij ) deg(ekl )δilekj , (3)

where deg(eij ) is 0 (resp. 1) if eij is even (resp. odd). One can define sl(1|5) as
the (super)commutator algebra of gl(1|5); its basis consists of all elements eij

(i �= j ) and the Cartan elements e00 + eii (i = 1, . . . , 5). All such elements have
supertrace 0. The form of sl(1|5) corresponding to su(1|5) satisfies

e∗
ij = eji . (4)

The representations (p; 0, 0, 0, 0) have been studied extensively in Palev
(1980). Here we summarize some properties (see also Palev et al., 2003). The
basis vectors or states of the irrep (p; 0, 0, 0, 0) are of the form

|p; θ〉 = |p; θ1, θ2, θ3, θ4, θ5〉, with θi ∈ {0, 1} and |θ | =
5∑

i=1

θi ≤ p. (5)

So clearly, one finds back the dimension 32 for p ≥ 5, and the condition |θ | ≤ p

is in agreement with the dimensions of the atypical irreps given in (2).
The action of the diagonal generators on these states is given by:

e00|p; θ〉 = (p − |θ |)|p; θ〉, (6)

eii |p; θ〉 = θi |p; θ〉. (7)
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The action of the odd generators e0i and ei0 is also simple:

e0i |p; θ〉 = θi(−1)θ1+···+θi−1
√

p − |θ | + 1 |p; θ1, . . . , θi − 1, . . . , θn〉, (8)

ei0|p; θ〉 = (1 − θi)(−1)θ1+···+θi−1
√

p − |θ | |p; θ1, . . . , θi + 1, . . . , θn〉. (9)

The action of the remaining even generators eij on these basis states follows from
the above and eij = [[ei0, e0j ]] (1 ≤ i �= j ≤ 5):

eij |p; θ〉 = θj (1 − θi)(−1)θi+...+θj−1 |p; . . . , θi + 1, . . . , θj − 1, . . .〉, for i < j ;

(10)

eij |p; θ〉 = −θj (1 − θi)(−1)θj +...+θi−1 |p; . . . , θj − 1, . . . , θi + 1, . . .〉, for i > j.

(11)

Note that the vectors |p; θ〉 form an orthonormal basis for the irrep
(p; 0, 0, 0, 0), and that — in agreement with the form (4) — the representatives of
the generators satisfy e

†
ij = eji with respect to this inner product.

We shall now describe some relevant subalgebras of su(1|5). First of all,
the even subalgebra of su(1|5) is u(1) × su(5). Herein, the su(5) basis consists
of all elements eij (i �= j ) with 1 ≤ i, j ≤ 5 and the diagonal elements eii −
ei+1,i+1 (1 ≤ i < 5). The u(1) generator should be an element with supertrace 0,
commuting with su(5). It is unique up to a factor, and we choose:

X = 1

4
(5e00 + e11 + e22 + e33 + e44 + e55). (12)

It is clear from the above actions (6)–(7) that

X|p; θ〉 =
(

5

4
p − |θ |

)
|p; θ〉. (13)

This yields the values of u(1) in (1) or in Table II.
Next, we consider the usual subalgebra su(3)c × su(2)w × u(1)w of su(5).

In the current case, the generators of su(3)c are given by eij , eji (1 ≤ i < j ≤ 3),
e11 − e22 and e22 − e33. Those of su(2)w by e45, e54, and e44 − e55. In fact, the
usual weak isospin generator corresponds to Iw

3 = 1
2 (e44 − e55). Finally, the u(1)w

generator should be traceless and commuting with su(3)c × su(2)w; it is again
unique up to a factor, and in order to find back the common unities one takes:

Y = Yw = −2

3
(e11 + e22 + e33) + (e44 + e55). (14)

It is now easy to check the action of all these generators on the states |p; θ〉,
and to associate a fundamental fermion with each of these basis vectors. For
example, |p; 00000〉 corresponds to the left-handed antineutrino ν̃L. The three
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basis vectors

|p; 10000〉, |p; 01000〉, |p; 00100〉
are the basis vectors of the u(1) × su(3)c × su(2)w × u(1)w irrep ( 5p

4 − 1; 10; 0;
− 2

3 ), so they correspond to the three right-handed down quarks (one of each color).
The two basis vectors

|p; 00010〉, |p; 00001〉,
are the vectors of the u(1) × su(3)c × su(2)w × u(1)w irrep ( 5p

4 − 1; 00; 1; +1),
and so they correspond to the right-handed positron ẽR and antineutrino ν̃R. Con-
tinuing with this leads to Table III and a complete correspondence between the
basis vectors |p; θ〉 and the fundamental fermions.

As already observed in Dondi and Jarvis (1980); Batakis et al. (1993),
the adjoint representation of su(1|5) can be associated with the usual 24 gauge
bosons of su(5), plus the complex 5 of Higgs mesons (5 + 5) and an extra neutral
vector boson. It follows from (6)–(11) that the action of the 24 su(5) generators
on the basis states of (p; 0, 0, 0, 0) is p-independent; however, the action of the
remaining 11 su(1|5) generators does depend upon p. This opens the possibility

Table III. Association of Fundamental Fermions With Basis Vectors |p; θ〉

Subalgebra
Basis vectors |p; θ〉 representation Fermions

|p; 00000〉
(

5p
4 ; 00; 0; 0

)
ν̃L

|p; 10000〉, |p; 01000〉, |p; 00100〉
(

5p
4 − 1; 10; 0; − 2

3

)
dR

|p; 00010〉, |p; 00001〉
(

5p
4 − 1; 00; 1; +1 ẽR, ν̃R

|p; 11000〉, |p; 10100〉, |p; 01100〉
(

5p
4 − 2; 01; 0; − 4

3

)
ũL

|p; 10010〉, |p; 01010〉, |p; 00110〉
(

5p
4 − 2; 10; 1; + 1

3

)
uL

|p; 10001〉, |p; 01001〉, |p; 00101〉 dL

|p; 00011〉
(

5p
4 − 2; 00; 0; +2

)
ẽL

|p; 11100〉
(

5p
4 − 3; 00; 0; −2

)
eR

|p; 11010〉, |p; 10110〉, |p; 01110〉
(

5p
4 − 3; 01; 1; − 1

3

)
d̃R

|p; 11001〉, |p; 10101〉, |p; 01101〉 ũR

|p; 10011〉, |p; 01011〉, |p; 00111〉
(

5p
4 − 3; 10; 0; + 4

3

)
uR

|p; 11011〉, |p; 10111〉, |p; 01111〉
(

5p
4 − 4; 01; 0; + 2

3

)
d̃L

|p; 11110〉, |p; 11101〉
(

5p
4 − 4; 00; 1; −1

)
νL, eL

|p; 11111〉
(

5p
4 − 5; 00; 0; 0

)
νR
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that three generations of fundamental fermions could be associated with three
different p-values.

4. COMMENTS AND CONCLUSIONS

In this paper, we have presented a group theoretical framework for unified
model building in elementary particle physics. Elementary particles is not our field
of specialization, so we leave it to the specialists to consider this representation
theoretic picture as a basis for real models. It is only after such considerations that
the proposed su(1|5) structure can be regarded as an interesting part of physics,
or whether it is just a mathematical coincidence.

Let us nevertheless point out some peculiar properties of the present work.
First of all, su(1|5) has su(5) as a subalgebra, so the Georgi–Glashow unification
(Georgi and Glashow, 1974) is automatically built in. It is not clear to us, however,
whether a model based upon su(1|5) would have the same difficulties as that based
upon su(5).

An interesting feature of su(1|5) is that all 32 fundamental fermions are
accommodated in one and the same irrep (p; 0, 0, 0, 0), where p > 4 can be
chosen arbitrary. For p = 4, the irrep has dimension 31, and the bottom line of
Table II or Table III should be left out. In other words: the right-handed neutrino
is then deleted from the set.

The Lie superalgebras su(m|n) have the peculiar property that they possess
non-equivalent irreps with the same weight structure (up to a u(1)-shift), a property
not holding for (simple) Lie groups or Lie algebras. For example, for two distinct
values p1 and p2 greater than 4, the irreps (p1; 0, 0, 0, 0) and (p2; 0, 0, 0, 0) are
non-equivalent representations of su(1|5). But both have the same dimension
(namely 32), and essentially the same weight structure (up to a shift in the first u(1)
value). In other words, the branching to the subalgebra su(3)c × su(2)w × u(1)w

is the same for both irreps. Such a feature is not possible for Lie algebras. This
property opens the possibility that the three known generations of fundamental
fermions could be associated with three non-equivalent su(1|5) irreps of the type
(p; 0, 0, 0, 0), all three having the same su(3)c × su(2)w × u(1)w subirreps.

As a final speculation, let us mention that a new kind of unification also raises
the question of a new kind of substructure. In the case of su(1|5), this could be
offered by the quasi-fermi operators (Palev et al., 2003), which behave similar to
Fermi operators, and can be used as “creation and annihilation operators” precisely
for the construction of the irreps with labels (p; 0, 0, 0, 0).
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